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Abstract

Magnetic interactions in nanostructured Ba hexaferrite systems with partially coupled particles are studied. In this

kind of systems, there are regions with lower effective magnetic anisotropy Keff where nucleation of magnetization

reversal occurs. The Preisach distribution functions were measured for samples with different irreversible susceptibility

behavior. Several peaks in the Preisach distributions were identified and were associated with different particle clusters.

The coercive fields of these clusters were associated with Keff :
A model was developed linking Keff with the exchange-coupled volume (b) between two neighboring particles and the

number of particles in clusters.

The behavior that followed the best physical interpretation led to conclude that magnetization reversal starts in the

exchange-coupled volume b between two neighboring particles and then propagates to the rest of the particle.
r 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The magnetic properties of granular or particu-
late systems, nanostructured single-phase or
composite systems are strongly affected by inter-
particle interactions such as dipolar and exchange
interactions that can assist changes in the mag-
netization state of the system.
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Although the ideas behind exchange interac-
tions are simple, most of the theoretical work done
is based on micromagnetic modeling, particularly
when the exchange-spring behavior is modeled in
order to reveal the correlation between interac-
tions and grain structure in composite magnets
(see, for example, Refs. [1,2] and references
therein).
Interphase dipolar interactions in hard–soft

nanocomposite systems are observed to produce
displacements of the hysteresis loop when the
hard phase consists of randomly oriented nano-
particles embedded in a larger particle size soft
d.
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matrix [3]. This behavior was associated with stray
fields in the soft phase around the hard phase [1,3].
These stray fields are strongly dependent on the
geometry of the inhomogeneities. It was shown
that inclusions with edges and corners produce
larger demagnetizing fields than spherical inclu-
sions [1].
Nanostructured single-phase or composite sys-

tems can be affected by exchange interactions
between particles. Uncoupled particles in a single-
phase hard magnetic material have high coercivity
and a value of remanence Mr that is half of
saturation magnetization MS; i.e. Mr ¼ 0:5MS:
Hard–soft composites with uncoupled particles
have Mr ¼ 0:5MS Vh; where Vh is the volume
fraction of the hard magnetic phase. If the
particles are strongly coupled, remanence is
enhanced above the mentioned value, while high
coercivity is preserved (see, for example, Refs.
[4,5]).
From experience it is known that the coercive

field Hc of hard magnetic materials cannot be
described by the nucleation field of single domain
particles, given by Brown’s equation

Hc ¼ 2
K1

MS
� NeffMS;

where K1 is the first anisotropy constant and Neff
is the particle’s effective demagnetizing factor.
To explain this discrepancy, two models have

been proposed (see, for example, Ref. [6]):
1.
 The nucleation model, where regions of
reduced magnetocrystalline anisotropy con-
stant are considered.
2.
 The global model [7], where pre-existing nuclei
are considered and only a critical field is
required to expand them.
The main difference between the nucleation
model and the global model is that the former
links the coercive field to the local changes in
magnetocrystalline anisotropy while the later
assumes a thermal activation mechanism for the
expansion of nuclei of inverse magnetization.
The nucleation model predicts a modification to

Brown’s equation known as the ‘‘modified
Brown’s equation’’ asserting that the coercive field
is given by [8]

Hc ¼ 2
K1

MS
af aK aex � NeffMS; ð1Þ

where af takes care of the grains’ orientation
distribution in the magnet (for a randomly
oriented structure is equal to 0.5); the coefficient
aK takes into account the reduction in anisotropy
in the regions near internal surfaces, as grain
boundaries and interphases. The third coefficient,
aex; is used to describe the effect of exchange
coupling between neighboring grains on the
coercive field of the magnet. For alloys of
Nd2Fe14Bþ Fe it is found that aexE0:3 [9]; when
the mean grain size of the hard phase varies
between 25 and 40 nm aexE0:32–0.35 and when
the mean grain size goes up to 60 nm aex reduces
to 0:3 [5].
The effect of exchange interactions between

coupled grains of hard magnetic materials can be
visualized as a wall-like magnetic moment dis-
tribution in the volume next to the interface
between grains. Those grains have a different easy
axes orientation and when they are exchange
coupled, the field needed to reverse the magnetiza-
tion is drastically reduced [9]. Coercivity decreases
as the exchange coupling increases.
Ignoring magnetostatic interactions, the general

behavior of coercivity in nanostructured two-
phase systems was analyzed using the concept of
the exchange correlation length in both phases
[11]. The effective anisotropy constant of the
system, Keff ; depends on the number of particles
that are in contact with each other, the crystal size
D and the characteristic length lK—the anisotropy
correlation length is the leading exchange length in
hard magnetic materials [10]— defined as

lK ¼

ffiffiffiffiffiffi
A

K1

r
;

where A is the exchange constant and K1 is the first
anisotropy constant.
Systems with completely coupled particles occur

when lK > D and when the particles are uncoupled,
it is lK5D and every particle magnetizes indepen-
dently. An intermediate case occurs for values of
lK of the order of D=10: In this case, the particles
are partially coupled and there exists a superficial
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layer around each particle (of thickness of the
order of lK ) in which, as a consequence of the
misalignment among the directions of the easy axis
at both sides of the particle edge, the anisotropy
diminishes [11,12]. As a result of this reduction in
anisotropy, the regions contribute with lower
nucleation fields for magnetization reversal.
As a general rule, coercivity has been used as a

tool to estimate Keff in systems under study, not
taking into account that the coercive field depends
on the entire system. However, there exists a way
to describe the magnetic behavior of a system of
particles considering both the coercivity of each
particle and the internal field acting on them. This
can be accomplished by using the Preisach model
[13,14] once the Preisach distribution function,
f ðhc; huÞ; of coercive (hc) and interaction (hu) fields
for the particles is known.
In a previous work by Bertorello et al. [15], the

authors observe complex effects on the Preisach
distribution function of samples of Ba hexaferrite
with different degrees of sintering. They suggest
that these effects are originated by the exchange
interactions among particles with different number
of neighbors.
In this work, our aim is to study magnetic

interactions by systematically applying the pre-
viously obtained results [15]. The chosen system is
Ba hexaferrite where the structure of nanoscale
particles is in the range where the relation lKoD is
valid. In these systems, partially coupled particles
are present and nucleation of magnetization
reversal occurs in regions with KeffoK1: By
calculating Preisach distribution functions, we
are able to identify the coercive fields of particle
clusters and to link those coercive fields with Keff
by proposing a model that can explain interactions
between particles.
2. Description of the studied systems

Our interest is to study magnetic interactions in
Ba hexaferrite nanoscale-particle systems in which
different degrees of interaction are present. One
way of producing such interactions is by allowing
the sintering of particles. Different degrees of
sintering give rise to a distribution of clusters with
different number of particles that interact with
each other. These clusters behave differently when
a magnetic field is applied; in each sample there are
clusters that act as having an effective anisotropy
constant Keff which depends on the number of
particles that are in contact amongst each other,
the width of the coupled regions and the strength
of the exchange intergranular coupling. In this
work, different distributions of clusters are
obtained by varying the sintering conditions.
We assume a continuous distribution of magne-

tization inversion fields due to a distribution of
effective anisotropy constants. Thinking in terms
of a Preisach model, those inversion fields can be
identified with the coercive fields hc when the
magnetostatic interactions hu are zero. Then,
calculating the Preisach distribution f ðhc; huÞ
allows us to identify the distribution of magnetiza-
tion inversion fields by means of f ðhc; hu ¼ 0Þ:
As usual, the Preisach model describes our

system through a set of elementary non-symmetric
square loops each one representing an elemental
magnetic moment characterized by the coercive
field hc and the interaction field hu: The whole
system is described by the Preisach distribution
function f ðhc; huÞ which tells us how many
elementary loops have coercive fields between hc
and hc þ dhc and interaction fields between hu and
hu þ dhu: The magnetization of the system under
the effect of an applied field H is then written as

MðtÞ ¼ 2MS

Z
N

0

dhc

Z bðhcÞ

0

f ðhc; huÞ dhu: ð2Þ

The boundary bðhcÞ is a staircase line [14] that
divides the region where the elemental magnetic
moments point to the same direction than H (+
direction) from the region where they point to the
opposite direction (�direction). This boundary is a
function of time through the magnetic past history
[13,14].
Calculating the Preisach distribution function is

easier if we change variables from hc; hu to a ¼
ðhu þ hcÞ; b ¼ ðhu � hcÞ: In terms of these new
variables it is

f ða;bÞ ¼ �
q2Mða;bÞ
qa qb

;
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where Mða;bÞ is the magnetization of the sample
at a point ða;bÞ of a first-order reversal curve
(FORC).1

The Preisach distribution function will allow us
to discuss about the nature of the interactions and
the magnetization reversal process.
3. Experimental

The considered samples are the same as the ones
used in the work mentioned in Ref. [15]. Sample
M1 of nanostructured barium hexaferrite was
obtained by milling the elemental oxides (Fe2O3
and BaCO3) in stoichiometric proportions in a
planetary ball mill and performing a heat treatment
at 1000�C in air for 1 h. This sample is composed of
highly crystalline phase M and very small amounts
of hematite, with a mean crystal size of 50nm.
Other samples of Ba hexaferrite+hematite were

obtained after milling Fe2O3 and BaCO3+20wt%
Fe and then heating at 1000�C in air atmosphere.
Sample MF1 was obtained by first heat-treating
the loose powder for 1 h and then compacting it
into platelets 1–2mm thick. Sample MF8 was
obtained by first compacting the as-milled powder
and then heat treating it for 8 h. In the first case,
only limited sintering occurred and only some
agglomeration of particles was observed. In the
second case, the sintering process produced a solid
sample, with an apparent density of 3:46 g=cm3;
approximately 66% of the full density. X-ray
diffraction performed on these samples showed
that both of them consist of Ba hexaferrite and
hematite, with mean crystal sizes of 50 (MF1) and
60 nm (MF8), values well below the monodomain
particle size for Ba hexaferrite [18].
4. Results and comments

X-ray diffraction shows that all samples contain
highly crystalline Ba hexaferrite and hematite
1The measurement of a FORC starts by saturating positively

the sample, then ramping down the applied field up to a value

H ¼ a and then recording the values Mða; bÞ when the field is
increased up to a value H ¼ b ¼ �a: For more details the
reader may consult Ref. [13–17].
approximately in proportion 95–5% in sample
M1 and 80–20% in samples MF1 and MF8. As
mentioned before, the mean crystal size as
measured by line broadening applying the Scherrer
formula gives 50 nm for M1 and MF1 and
60 nm for MF8. Remanent magnetization gives
Mr=MS ¼ 0:55 in all cases. As the particles are
randomly oriented that ratio should be 0:5: The
modest 10% remanence enhancement is produced
by a partial exchange coupling between Ba
hexaferrite crystals. The exchange coupling occurs
in the regions adjacent to the contact surface in
between the crystals.
Figs. 1–3 show the Preisach distribution func-

tions obtained for the three studied samples.
In order to check the validity of these Preisach

distributions, we compared the measured values of
the irreversible susceptibility wiirr with the calcu-
lated wi�calcirr using:

wi�calcirr ¼ witot � wirev

¼
qM

qHi
� wirev ¼ 2MS

Z
N

0

f ðhc; hc � HiÞ dhc � wirev;

where superscript i indicates derivatives with
respect to the internal field Hi; calculated by
taking into account the demagnetizing field. The
reversible susceptibility wirev was determined by
calulating the slope of a small loop performed at
different fixed fields, after saturating the sample. A
good agreement between wi

irr and wi�calcirr is ob-
tained, indicating that the Preisach distributions
found to describe the three systems correctly.
As shown in Fig. 1, M1 has a Gaussian-shaped

distribution function, with a maximum centered in
hc ¼ 4100 Oe and standard deviation sc ¼ 1000 Oe
on the variable hc and su ¼ 200 Oe on the variable
hu: The peak value is very close to the field for
which the irreversible susceptibility on this sample
has a maximum. This continuous Gaussian-like
distribution of hc could be attributed to the fact
that this sample is composed of phase M with only
5% hematite and the partial sintering has pro-
duced a continuous distribution of the effective
anisotropy Keff :
The Preisach distributions obtained for MF1

and MF8 (Figs. 2 and 3, respectively) are more
complex than the usual Preisach distributions
reported in the literature for systems composed
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of a single magnetic phase. The one corresponding
to sample MF1 has a narrow and high peak at
5300Oe, a number of overlapping small peaks
down to 2500 Oe and a distinct and low-intensity
peak at 2000Oe. Sample MF8 has a Preisach
distribution with a succession of almost equally
spaced distinct peaks of roughly the same intensity
centered at different hc from 4200 to 1500 Oe: The
interaction field in both samples is low, with
standard deviation not exceeding 200 Oe while the
observed peaks have standard deviation in hc not
greater that 250 Oe:
The observed multiple peaks suggest us that

they represent different groups of particle clusters
that invert their magnetization at the fields hc of
the maxima. The sintering process has produced a
distribution of cluster sizes, as sintering occurs
among different number of particles. The origin of
this kind of distributions lies in the fact that
both MF1 and MF8 are composed not only of
Ba hexaferrite but also of 20% hematite. This
phase surrounds conglomerates of phase M with
different number of particles preventing them
from welding with each other during the sintering
process. Also the pores in the samples play a
role in the formation of the conglomerates. In
MF1 there are more pores because this sample
was prepared by first heat treating the powder
and then compacting it. More conglomerates
with few particles are expected in this case. This
fact is reflected in the Preisach distribution of
this sample because, as it can be seen in Fig. 2,
the highest maximum is attained at high fields.
On the other hand, MF8 was first compacted
and then sintered, so in this case there was
a smaller proportion of pores and a wider
distribution of conglomerates that underwent the
sintering without losing certain ‘‘individuality’’. It
is highly probable that each conglomerate will
have a well-defined hc value, the larger the number
of particles per conglomerate the lower the
corresponding hc:
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5. Proposed interaction model and discussion

As mentioned before, the Preisach distri-
butions obtained for samples MF1 and MF8
suggest that there is a distribution of clusters
with different number of particles that invert
their magnetization at different coercive fields,
each type of cluster producing a peak in the
Preisach distribution. Then, each peak corre-
sponds to the Keff value associated with each type
of cluster and is due to the existence of regions
with lower coercivity produced by exchange
coupling. The underlying idea is that the more
neighbors are in contact with a certain particle, the
more regions with a weakened anisotropy con-
stant—and thus lower inversion field—will be.
Therefore, a particle that is exchange-coupled with
only one neighbor has a higher inversion field hc
than a particle with two exchange-coupled neigh-
bors, this one has a higher hc than one with three,
and so on.
We identify the coercive field Hexp
c of each type

of cluster with the maxima hc of every peak that
appears in the Preisach distribution. Then, if the
coercivity is defined by the effective anisotropy
constant, from Eq. (1) we have:

Keff ¼ K1af aK aex ¼
MS

2
ðHexp

c þ NeffMSÞ; ð3Þ

where Neff ¼ 3
20 lnðD=lwÞ [10], being D the mean

particle size and lw the domain wall thickness. As
the samples fabrication process does not favor any
particular orientation we are dealing with ran-
domly oriented structures, so it is af ¼ 1

2
: This is

valid not only for the sample as a whole but also
for the particles that invert their magnetization at
fields between Hc and Hc þ dHc because their
number is of the order of 1014 or higher.
We assign the observed peaks in the Preisach

distribution of MF1 and MF8 (see Figs. 2 and 3) to
particles that interact with up to n ¼ 11 neighbor-
ing particles. In the case of sample MF1, the
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Preisach distribution (Fig. 2) shows a very high
peak for a high value of Hexp

c and considerable
lower peaks for smaller fields. It seems reasonable
that sample MF1 is formed by a great majority of
clusters of few particles (one or two) because they
did not have the chance to ‘‘stick to’’ as many
particles as in MF8. The strongest peak in MF1 is
observed at a value of Hexp

c that corresponds to
particles to which we assign no interacting
neighbors because KeffEK1=2:
In Fig. 4, Keff given by Eq. (3) is plotted as a

function of the assigned number of exchange
coupled neighbors, n; that stick to a given particle.
The data for both samples give a common linear
dependence and this suggests that the exchange-
coupled volume per particle is constant.
Let b n be the volume fraction of the superficial

layer of depth of the order of lK that has less
anisotropy with respect to the total volume of the
particle. The effective anisotropy constant inside
the particle, Kin; and in the superficial layer
affected by exchange coupling, Kex; are given by

Kin ¼K1aK af ðas aex ¼ 1 inside the particle;

in the uncoupled volumeÞ and ð4Þ

Kex ¼ K1aK af aex: ð5Þ
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Then, we may write Keff as a weighted mean
between coupled and uncoupled regions,2 as

Keff ðnÞ ¼ Kinð1� b nÞ þ Kexb n ð6Þ

or else

Keff ðnÞ ¼ Kin þ b ðKex � KinÞ n: ð7Þ

From this expression it is clear the linear
relationship between Keff and n; in which Kin is
the y-intercept and b ðKex � KinÞ is the slope. From
the y�intercept of the line in Fig. 4 it results:

Kin ¼ 15:5� 106 GOe:

Note that this result gives KinEK1=2 and aKE1
in the uncoupled volume (the region inside the
particle).
The determination of Kex requires an estimation

of b: For spherical particles, the volume affected by
exchange coupling is a spherical casque of width
2:5 lK where lK ¼ 4:9 nm [14]. This casque’s width is
considered as 2:5 lK because it is in this width that
lies all the energy stored in a domain wall [14].
The ratio of the volume affected by exchange

coupling to the particle volume is 0:87: If we
consider a maximum of 11 neighboring particles,
we can say that b is 1

11
of the volume of the

spherical casque affected by exchange coupling.
This reasoning gives an estimate of b ¼ 0:08:
Now it is possible to evaluate Kex from the

second term of Eq. (6), giving

Kex ¼ 5� 106 G Oe:

From the slope of the line given by Eq. (6) and
the calculated values of Kin and Kex we deduce:

aKE1:

The coefficient which accounts for exchange
coupling, aex; can be evaluated from the definition
of Kex given in expression (5), obtaining

aexE0:32:

The results obtained for the parameters aK and
aex using the model proposed in this paper are
based on evidence of clustering of particles
obtained from the Preisach distributions. These
2This kind of description has been previously used by Arcas

et al. [11] for two-phase materials and by Billoni et al. [19] to

study crystalline anisotropy in Nd2Fe14B + Fe compounds.
results are somehow different to other authors’
who used only coercivity values for the whole
sample in systems of particles in which exchange
coupling occurs. In particular, aK is usually found
between 0.6 and 0.8, revealing the existence of
zones of reduced anisotropy not linked to ex-
change coupling. In our case aKE1 means a high
degree of crystallinity and low enough stray fields
and/or surface defects as they are not capable of
inducing noticeable changes in the anisotropy.
This fact is especially true for the inner part of the
particles where Kin is exactly K1=2 due to the
randomness of the structure. The outer shell may
have some reduced anisotropy due to stray fields
and surface defects but this effect is superimposed
to the reduction in anisotropy due to exchange
coupling, resulting in a value for aex that is of the
same order than the one found for other hard
magnets [5,9]. When the whole particle is ex-
change-coupled to its neighbors such detailed
description cannot be made, then aK is assigned
to the whole particle and the final result is that the
product aK aex is in the range 0.18 – 0.25 [5,6,20].
In the literature, aex is an empirical parameter

that reflects the magnitude of the exchange
interactions. The model presented here allows to
relate this parameter with the interaction volume
per particle and the number of neighbors each
particle has. Accordingly, a given particle interacts
with n neighbors, in an average volume b V with
each of them (V is the particle volume). Magnetiza-
tion reversal will start in the most favorably oriented
volume b V with respect to the magnetic field.
Because of the exchange interaction of a given

particle with n neighbors the spin distribution
inside it is no longer uniform, so that the
mechanism for magnetization reversal cannot be
coherent rotation–except in an isolated particle.
We suggest that magnetization reversal is a

process that starts in one of the exchange volumes
b V ; the one with the most favorable orientation to
invert its magnetization.
6. Conclusions

In this work, it is demonstrated the usefulness of
the Preisach distribution to gain insight into the
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demagnetizing process. The Preisach distribution
function gives us direct information about the
exchange interactions that occur in clusters of
particles with different number of neighbors. In
the studied system, Ba hexaferrite with particle
volume of 65� 10�18 cm3; the exchange interaction
occurs in the volume of a superficial shell of width
2:5 lK and the interaction volume per particle is of
the order of 0:08 of the particle volume.
Assuming an effective anisotropy constant Keff

as the weighted mean between coupled and
uncoupled regions we are able to calculate the
empirical factors that appear in the modified
Brown’s equation.
It is worth mentioning that it was possible to

ascertain interaction effects between neighboring
particles that form clusters. This fact shows the
usefulness of the Preisach distribution for studying
interaction effects in magnetic particulate systems.
The calculation of aex and aK usually involves
temperature-dependent coercivity measurements,
but in this work we were able to obtain these
coefficients from room-temperature measurements
only.
Further improvements of the model presented

here are based on how b and Kex are related to the
particular spin orientation distribution across
grain boundaries and are currently being devel-
oped. That information will provide a relationship
between the empirical factor aex and the strength
of the exchange-coupling mechanism.
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